Differentiation

First Principle of Differentiation

f'(x)= \lim_{h \to 0}\frac{f(x+h)-f(x)}{h}

Properties of Derivatives

\frac{d}{dx}c=0 Where c is a constant

\frac{d}{dx}[cf(x)]=c\frac{d}{dx}f(x) or (cf)'=cf'

\frac{d}{dx}[f(x)+g(x)]=\frac{d}{dx}f(x)+\frac{d}{dx}g(x)

\frac{d}{dx}[f(x)-g(x)]=\frac{d}{dx}f(x)-\frac{d}{dx}g(x)

Exponents

\frac{d}{dx}(x)=1

\frac{d}{dx}(x^n)=nx^{n-1}

Exponential Fuctions

\frac{d}{dx}(e^x)=e^x

\frac{d}{dx}(a^x)=a^xlna

\frac{d}{dx}(lnx)=\frac{1}{x}

Trigonometric Functions

\frac{d}{dx}(\sin x)=\cos x

\frac{d}{dx}(\cos x)=-\sin x

\frac{d}{dx}(\tan x)=\sec^2x

\frac{d}{dx}(\csc x)=-\csc x\cot x

\frac{d}{dx}(\sec x)=\sec x\tan x

\frac{d}{dx}(\cot x)=-\csc^2x

Inverse trigonometric functions sin^{-1}=arcsin

\frac{d}{dx}(\sin^{-1}x)=\frac{1}{\sqrt{1-x^2}}

\frac{d}{dx}(\cos^{-1}x)=-\frac{1}{\sqrt{1-x^2}}

\frac{d}{dx}(\tan^{-1}x)=\frac{1}{1+x^2}

\frac{d}{dx}(\csc^{-1}x)=-\frac{1}{|x|\sqrt{x^2-1}}

\frac{d}{dx}(\sec^{-1}x)=\frac{1}{|x|\sqrt{x^2-1}}

\frac{d}{dx}(\cot^{-1}x)=-\frac{1}{1+x^2}

Hyperbolic Functions

\frac{d}{dx}(\sinh x)=\cosh x

\frac{d}{dx}(\cosh x)=\sinh x

\frac{d}{dx}(\tanh x)=sech{^2} x

\frac{d}{dx}(\csch x)=-\csch x\coth x

\frac{d}{dx}(\sech x)=-\sech x\tanh x

\frac{d}{dx}(\coth x)=-csch ^2 x

Chain Rule

The composite function F=f\circ{g} defined by F(x)=f(g(x))

\frac{d}{dx}(f[g(x)])=\frac{dy}{dx}=\frac{dy}{du}\frac{du}{dx}      or

F'(x)=f'(g(x))\cdot{g'(x)}

Product Rule

\frac{d}{dx} [f(x)g(x)]=f(x)\frac{d}{dx}[g(x)]+g(x)\frac{d}{dx}[f(x)] or

(fg)'=fg'+gf'

Quotient Rule

\frac{d}{dx}[\frac{f(x)}{g(x)}]=\frac{g(x)\frac{d}{x}[f(x)]-f(x)\frac{d}{dx}[g(x)]}{[g(x)]^2}     or

(\frac{f}{g})'=\frac{gf'-fg'}{g^2}

Video Links

Related Rates