Trigonometric Identities

 \sin x=\frac{1}{\csc x}\csc x=\frac{1}{\sin x}
\cos x=\frac{1}{\sec x}\sec x=\frac{1}{\cos x}
\tan x=\frac{\sin x}{\cos x}=\frac{1}{\cot x}\cot x=\frac{\cos x}{\sin x}=\frac{1}{\tan x}

\sin^2x+\cos^2x=1
\therefore \sin^2x=1-\cos^2xand \cos^2x=1-\sin^2x
\tan^2x+1=\sec^2x1+\cot^2x=\csc^2x

\sin 2x=2\sin x\cos x\cos 2x=\cos^2x-\sin^2x
=2\cos^2x-1
=1-2\sin^2x
\tan 2x=\frac{2\tan x}{1-\tan^2x}

\sin x=\cos (\frac{\pi}{2}-x)\cos x=\sin (\frac{\pi}{2}-x)
\tan x=\cot (\frac{\pi}{2}-x)
\csc x=\sec (\frac{\pi}{2}-x)\sec x=\csc (\frac{\pi}{2}-x)
\cot x=\tan (\frac{\pi}{2}-x)

\sin (-x)=-\sin x
\cos (-x)=\cos x
\tan (-x)=-\tan x

\sin (x+2\pi)=\sin x\sin (\pi-x)=\sin x
\cos (x+2\pi)=\cos x\cos (\pi-x)=-\cos x
\tan (x+\pi)=\tan x\tan (\pi-x)=-\tan x

\sin (x+y)
=\sin x\cos y+\cos x\sin y
\sin (x-y)
=\sin x\cos y-\cos x\sin y
\cos (x+y)
=\cos x\cos y-\sin x\sin y
\cos (x-y)
=\cos x\cos y+\sin x\sin y
\tan (x+y)
=\frac{\tan x+\tan y}{1-\tan x\tan y}
\tan (x-y)
=\frac{\tan x-\tan y}{1+\tan x\tan y}

\sin\frac{x}{2}=\pm\sqrt{\frac{1-\cos x}{2}}
\cos\frac{x}{2}=\pm\sqrt{\frac{1+\cos x}{2}}
\tan\frac{x}{2}=\frac{\sin x}{1+\cos x}=\frac{1-\cos x}{\sin x}